

Tetrahedron Letters 41 (2000) 9777-9779

TETRAHEDRON LETTERS

Regioselective domino metathesis of 7-oxanorbornene derivatives as a new stereoselective entry into 2,6-dioxabicyclo[4.3.0]nonenes

Odón Arjona*, Aurelio G. Csákÿ, M. Carmen Murcia and Joaquín Plumet*

Departamento de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain

Received 10 July 2000; accepted 30 September 2000

Abstract

Domino metathesis of allyl- and propargyl-(2-*endo*-7-oxanorborn-5-enyl) ethers with allyl acetate in the presence of Grubbs' ruthenium catalyst affords stereoselectively substituted *cis*-fused bicyclic ethers (2,6-dioxabicyclo[4.3.0]non-8-enes). © 2000 Elsevier Science Ltd. All rights reserved.

Olefin metathesis has emerged recently as a powerful tool in synthesis and for applications to natural product synthesis.¹ In particular, the ring opening metathesis of bicyclic alkenes deserves special consideration from a stereochemical point of view, as the chiral information contained in the starting material is conserved throughout the process. In this context, the combination of ring-opening (ROM), ring closing (RCM) and cross (CRM) metathesis (domino metathesis) has allowed for the construction of [n.3.0] bicyclic alkenes from norbornenes in a stereocontrolled way.²

On the other hand, the *cis*-fused 2,6-dioxa[4.3.0]nonane skeleton 1 is ubiquitous among natural products and annulated nucleotide antibiotics.³ In this way, we expected that the domino metathesis of allyl- 2 and propargyl-⁴ 3 oxanorbornenic ethers⁵ (Scheme 1) could constitute a straightforward entry to the systems⁶ 4 and 5, respectively.

Compounds 2 and 3 were prepared by *O*-alkylation of the related 2-*endo*-7-oxanorborn-5-ene alcohols⁷ (KH/DMF, allyl bromide or propargyl bromide). Treatment of compounds 3 with allyl acetate in the presence of Grubbs' ruthenium catalyst⁸ (Cl₂(PCy₃)₂Ru=CHPh, 8% mol) afforded the *cis*-fused 8-(2-propene)-2,6-dioxabicyclo[3.4.0]nonenes 5 as the only reaction products⁹ (Scheme 2). Catalytic hydrogenation of 5 gave compounds¹⁰ 7.

On the other hand, the reaction of compounds 2 under the same conditions gave the related *cis*-fused 2,6-dioxabicyclic compounds 4 as major products, together with minor amounts of the

0040-4039/00/\$ - see front matter @ 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)01721-4

^{*} Corresponding authors. Fax: 34 91 3944100; e-mail: plumety@eucmax.sim.ucm.es

Scheme 2.

regioisomeric bicycles **8** as a mixture of *E* and *Z* diastereomers (Scheme 3). Catalytic hydrogenation of **4** and **8** gave compounds¹⁰ **9** and **10**, respectively. It should be pointed out that compound **8a** was not isolated, but dimerized under the reaction conditions to give **11** (10% isolated yield).

Scheme 3.

In conclusion, *cis*-fused 2,6-dioxabicyclo[4.3.0]non-8-enes either with an alkenyl chain at C-3 or at C-3 and C-8 can be stereoselectively prepared from 7-oxanorbornene derivatives by a domino metathesis, starting from the corresponding allyl or propargyl ether, respectively. Furthermore, the procedure is suitable for the introduction of a quaternary stereogenic center at C-5 of the resulting bicycle. Extension of this methodology to the stereoselective synthesis of other bicycles interesting in natural products chemistry is also in progress and will be published in due course.

Acknowledgements

Financial support was obtained from the Ministerio de Educación y Cultura, Spain, through grant No. 96-0641. M.C.M. thanks Ministerio de Educación y Cultura for a predoctoral fellowship.

References

- For selected recent reviews, see: (a) Grubbs, R. H.; Chang, S. *Tetrahedron* 1998, *54*, 4413–4458. (b) Armstrong, S. K. J. Chem. Soc., Perkin Trans. 1 1998, 371. (c) Fürstner, A. *Top. Organomet. Chem.* 1998, *1*, 37. (d) Randall, M. L.; Snapper, M. L. J. Mol. Catal. (B) 1998, *133*, 29–40. (e) Blackwell, H. E.; O'Leary, D. J.; Chaterjee, A. K.; Washenfolder, R. A.; Bussmann, D. A.; Grubbs, R. H. J. Am. Chem. Soc. 2000, *112*, 58–71.
- 2. Stragies, R.; Blechert, S. Synlett 1998, 169-170.
- (a) Dictionary of Natural Products on CD-ROM; Chapman and Hall/CRCnet Base, Version 8.1, August 1999. (b) Knapp, S. Chem. Rev. 1995, 95, 1859–1876. (c) Leeuwenburgh, M. A.; Kulker, C.; Duynstee, H. I.; Overkleeft, H. S.; van der Marel, G. A.; van Boom, J. H. Tetrahedron 1999, 55, 8253.
- For selected recent accounts on alkyne-alkene metathesis, see: (a) Stragies, R.; Schuster, M.; Blechert, S. J. Chem. Soc., Chem. Commun. 1999, 237–238. (b) Schürer, S. C.; Blechert, S. J. Chem. Soc., Chem. Commun. 1999, 1203–1204. (c) Kotha, S.; Sreenivasachary, N. J. Chem. Soc., Chem. Commun. 2000, 503–504. (d) Smulek, J. A.; Diver, S. T. J. Org. Chem. 2000, 65, 1788–1792 and references cited therein.
- For recent accounts on ROM–RCM in 7-oxanorbornenic systems, see: (a) Arjona, O.; Csákÿ, A. G.; Murcia, M. C.; Plumet, J. J. Org. Chem. 1999, 64, 9739. (b) Arjona, O.; Csaky, A. G.; Plumet, J. Synthesis 2000, 857.
- For recent accounts on the synthesis of cyclic ethers using RCM, see: (a) Jeffrey, A. J.; Ford, J. G.; Stamatos, P. J.; Hoveyda, A. H. J. Org. Chem. 1999, 64, 9690–9696. (b) Schmidt, B.; Westhus, M.; Tetrahedron 2000, 56, 2421–2426 (c) Ghosh, A. K.; Wang, Y. Tetrahedron Lett. 2000, 41, 2319–2322. (d) Daroille, R. J.; Rutherford, D. T.; Christie, S. D. R. Tetrahedron Lett. 2000, 41, 1255–1259. (e) Mulyer, J.; Harnbauer, M. Tetrahedron Lett. 2000, 41, 53–56. (f) Mori, M.; Kitamura, T.; Sakaribara, M.; Sato, Y. Org. Lett. 2000, 2, 543–545. (g) Clark, J. S.; Hamelin, O. Angew. Chem., Int. Ed. 2000, 39, 372–374. (h) Nakashima, K.; Ito, R.; Sono, M.; Tori, M. Heterocycles 2000, 53, 301. (i) Brovard, I.; Hanxing, L.; Martin, J. D. Synthesis 2000, 883. (j) Crimmins, M. T.; Emmite, K. A. Synthesis 2000, 849 and references cited therein.
- 7. The 2-endo-7-oxanorborn-5-ene alcohols were prepared by the addition of alkyllithiums to 7-oxanorborn-5-ene-2one. See: Arjona, O.; Fernández, R.; Mallo, A.; Pérez, S.; Plumet, J. J. Org. Chem. **1989**, *54*, 4158–4164.
- 8. Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem., Int. Ed. Engl. 1995, 34, 2039-2041.
- 9. Compounds 5 were obtained as 1:1 mixture of the E and Z isomers.
- 10. All compounds described herein were fully characterized on the basis of their analytical and spectroscopical data. Experimental procedure for the domino metathesis: To a solution of the oxabicyclic compound **2** or **3** (0.46 mmol) and vinyl acetate (0.46 mmol) in anhydrous CH_2Cl_2 (4 mL), was added $(Cy_3P)_2Cl_2Ru=CHPh$ (0.037 mmol) dissolved in CH_2Cl_2 (1 mL). The reaction mixture was stirred at rt for 3 h. After conversion was complete (TLC monitoring), the solvent was removed under reduced pressure. The reaction mixture was purified by chromatography (silica gel, hexane:ethyl acetate = 3:2).